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Abstract

Previous work has shown that there are two major com-
plexity barriers in the synthesis of fault-tolerant dis-
tributed programs, namely generation of fault-span, the
set of states reachable in the presence of faults, and, re-
solving deadlock states, where the program has no out-
going transitions. Although symbolic techniques can im-
prove the performance of synthesis algorithms by or-
ders of magnitude, efficient heuristics are still needed to
overcome the aforementioned obstacles. Thus, motivated
by the idea of partitioning the transition relation of dis-
tributed programs across multiple threads, in this paper,
we introduce an efficient parallel (shared memory) algo-
rithm for resolving deadlock states in symbolic synthesis
of distributed programs. In spite of notorious resistance
of symbolic algorithms for parallelization, experimental
results show that our parallel algorithm exhibits superlin-
ear performance improvement.

Keywords: Program transformation, Program syn-
thesis, Parallel algorithm, Multi-core, Distributed
programs, Deadlock resolution, Fault-tolerance.

1 Introduction
Automatically deriving programs that are correct-by-
construction has been one of the most ambitious goals
in computer science for several decades. Such auto-
matic construction of programs is especially useful in de-
pendable mission/safety-critical systems where correct-
ness plays a crucial role. One way to achieve this goal
is to use program synthesis techniques. Program synthe-
sis is especially beneficial in program maintenance where
system requirements constantly evolve and, thus, pro-
grams need to be revised. In the context of distributed
systems, program synthesis is desirable when an exist-
ing program is subject to uncontrollable faults. Indeed,

∗This work was partially sponsored by NSF CAREER CCR-
0092724 and ONR Grant N00014-01-1-0744.

since it may be virtually impossible to anticipate all faults
that a distributed program may be subject to at design
time, it is highly advantageous for designers of fault-
tolerant systems to have access to synthesis methods that
incrementally add fault-tolerance to a given distributed
fault-intolerant program. Intuitively, by a fault-tolerant
program, we mean a program that meets its safety and
liveness requirements in both absence and presence of
faults. And, the corresponding synthesis problem fo-
cuses on analyzing the existing fault-intolerant program
to add/remove transitions/actions so that the revised pro-
gram is fault-tolerant. Note that by its nature, such syn-
thesis algorithms are offline because they focus on trans-
forming one program into another.

One crucial problem in program synthesis is the time
and space complexity. To manage these complexities, in
our previous work [1, 2], we proposed a set of enumer-
ative and symbolic (BDD-based) techniques for adding
fault-tolerance to existing distributed fault-intolerant pro-
grams. In order to synthesize a fault-tolerant program,
the algorithms in [1,2] repeat a sequence of steps such as
(1) generation of fault-span (the set of states reachable by
program and fault transitions), (2) identifying and remov-
ing unsafe transitions, (3) resolving deadlock states, and
(4) reconstructing invariant predicate, until a fixedpoint
is reached. We also showed that symbolic techniques [2]
improve the performance of synthesis by several orders
of magnitude, paving the path for synthesizing moderate-
sized programs with state space of size 1030 and be-
yond. Based on the analysis of the experimental results
from [2], we observed that depending upon the structure
of the given distributed intolerant program, performance
of synthesis suffers from two major complexity obsta-
cles, namely generation of fault-span and resolution of
deadlock states. Thus, more efficient techniques are still
needed to overcome the aforementioned bottlenecks. In
this paper, we focus on the second problem, i.e., resolu-
tion of deadlock states. Deadlock resolution is especially
crucial in the context of dependable systems, as it guar-
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antees that the synthesized fault-tolerant program meets
its liveness requirements even in the presence of faults.

1.1 The Deadlock Resolution Problem
We now describe the issue of deadlock resolution using
the Byzantine agreement (denoted BA) problem [3]. We
omit other steps involved in synthesizing a fault-tolerant
version of BA (e.g., fault-span generation, preserving
safety, and reconstructing invariant predicate), as they are
not in the scope of this paper. BA consists of a general,
say g, and three (or more) non-general processes: j, k,
and l. Each process of BA maintains a decision d; for the
general, the decision can be either 0 or 1, and for the non-
general processes, the decision can be 0, 1, or ⊥, where
the value ⊥ denotes that the corresponding process has
not yet received the decision from the general. Each non-
general process also maintains a Boolean variable f that
denotes whether that process has finalized its decision.
For each process, a Boolean variable b shows whether or
not the process is Byzantine. In the fault-intolerant ver-
sion of this program, each non-general process copies the
decision from the general and then finalizes (outputs) that
decision, provided it is non-Byzantine. A fault transition
can cause a process to become Byzantine, if no other pro-
cess is initially Byzantine. Also, a fault can change the
d and f values of a Byzantine process. Let the sequence
〈x1, x2, x3, x4〉 denote the set of states with respect to
decision value of processes, i.e., x1 = d.g, x2 = d.j,
x3 = d.k, and x4 = d.l. In this notation, an overlined
(respectively, underlined) d-value shows that the corre-
sponding process has finalized its decision (respectively,
is Byzantine). Now consider the following scenarios:

• Starting from a state s0 in 〈1,⊥,⊥, 1〉, where the
general and process l agree on decision 1 and pro-
cesses j and k are undecided, the program may
reach the following sequence of states due to oc-
currence of faults (denoted 99K) and execution of
program actions (denoted →): 〈1,⊥,⊥, 1〉 99K

〈1,⊥,⊥, 1〉 99K 〈0,⊥,⊥, 1〉 → 〈0, 0,⊥, 1〉 →
〈0, 0, 0, 1〉. Let s1 be a state in 〈0, 0, 0, 1〉, where
the Byzantine general g and non-general processes j

and k agree on decision 0, but process l has decided
on 1. Now, consider the tasks for a synthesis algo-
rithm in dealing with state s1. Note that no process
can determine whether other processes have final-
ized their decision due to the issue of distribution.
Thus, the synthesis algorithm rules out transitions
that originate from s1 and j finalizes its decision, as
it would violate safety (i.e., agreement). Likewise,
it cannot allow k and l to finalize either. We call
states such as s1 a deadlock state, since the program
cannot proceed its execution. A synthesis algorithm
can resolve this deadlock state by simply adding a

recovery transition that changes the decision of l to
0 which results in reaching a legitimate state with-
out violating safety. After adding such transitions,
in the next iteration of the synthesis algorithm, we
can allow j and k to finalize their decision after con-
cluding that 〈0, 0, 0, 1〉 (i.e., where l is not Byzan-
tine and has finalized) is not reached.

• Now, consider the scenario where s0 reaches the
following sequence of states: 〈1,⊥,⊥, 1〉 →
〈1,⊥,⊥, 1〉 99K 〈1,⊥,⊥, 1〉 99K 〈0,⊥,⊥, 1〉 →
〈0, 0,⊥, 1〉 → 〈0, 0, 0, 1〉. Let s2 be a state in
〈0, 0, 0, 1〉, where non-general processes j and k

agree with the Byzantine general on decision 0, but
process l has finalized its decision on 1. Obviously,
s2 is also a deadlock state. However, unlike s1 in
the previous scenario, since process l has finalized
its decision, we cannot resolve s2 by adding safe
recovery. One approach to deal with such deadlock
states is to simply eliminate them (i.e., making them
unreachable). However, since we require that during
elimination of a deadlock state, no new deadlock
states must be created, a respective deadlock reso-
lution algorithm involves many backtracking steps.
In particular, in order to resolve s2, the algorithm
needs to explore the reachability graph and remove
the transition that allows a process to finalize its de-
cision while there exist two undecided processes.

In [2], we observed that in order to automatically synthe-
size a fault-tolerant version of BA identical to the one by
Lamport, Shostak, and Pease [3], 92% of the total syn-
thesis time is spent to resolve deadlock states.

1.2 Contributions
With this motivation, in this paper, we introduce a par-
allel BDD-based algorithm for resolving deadlock states
in distributed programs that are subject to a set of faults.
We specifically design our algorithm for multiprocessor
architectures with shared memory (e.g., multi-core pro-
cessors) due to their availability in virtually any organi-
zation. Intuitively, our algorithm partitions the transition
relation of the given intolerant program across multiple
threads where each thread works on a different proces-
sor core. The algorithm makes no assumptions about
the structure of a given program (e.g., set of transitions,
number of distributed processes, or its reachable states)
in order to resolve deadlock states. Thus, we expect the
algorithm to be generally applicable to a wide variety of
distributed programs. Our parallel algorithm tends to re-
quire more memory than its sequential version. However,
based on our experimental results, unlike model check-
ing, BDD-based synthesis algorithms run out of time be-
fore they run out of memory. Hence, the increased space
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complexity is unlikely to be a bottleneck during synthe-
sis.

We note that symbolic algorithms are known to be no-
toriously hard to parallelize due to the interdependence
among data structures involved in such algorithms. As
a matter of fact, while parallel implementations of sym-
bolic model checkers are often successful in increasing
available memory, the speedup gained from such tech-
niques is limited. This is largely due to the irregular
nature of the state-space generation task and the result-
ing high parallel overheads such as load imbalance and
scheduling of small computations. Although some re-
sults in the literature (e.g., [4]) have concluded that par-
allelization of symbolic algorithms involves too many in-
terrelated factors which leads to inefficiency in terms of
speedups, we argue that parallelization based on parti-
tioning the transition relation is remarkably efficient, as
it can potentially minimize the interdependence among
data structures such as BDDs. In fact, our experiments
show that our parallel algorithm exhibits superlinear
speedup as compared to the sequential algorithm.
Organization. The rest of the paper is organized as
follows. In Sections 2 and 3, we present precise defini-
tions for distributed programs, specifications, and fault-
tolerance. We formally state the problem of synthesiz-
ing fault-tolerant programs in Section 4. Section 5 is
dedicated to describe our parallel symbolic algorithm for
deadlock resolution. Subsequently, experimental results
and analysis are presented in Section 6. Related work is
discussed in Section 7. Finally, we conclude in Section
8.

2 Distributed Programs and Specifica-
tions

Let V = {v0, v1 · · · vn} be a finite set of Boolean vari-
ables. A state is determined by the function s : V 7→
{true, false}, which maps each variable in V to either
true or false. Thus, we represent a state s by the con-
junction s =

∧n
j=0 l(vj) where vj ∈ V for all j, and

l(vj) denotes a literal, which is either vj itself or its nega-
tion ¬vj . Since non-Boolean variables with finite domain
D can be represented by log(|D|) Boolean variables, our
notion of state is not restricted to Boolean variables.

Definition 2.1 (state predicate) A state predicate is a
finite set of states. Formally, we specify a state predicate
S = {s0, s1 · · · sm} by the disjunction S =

∨m
i=0(si).

Observe that although the formula defined in Defini-
tion 2.1 is in disjunctive normal form, one can represent
a state predicate by any equivalent Boolean expression.
We denote the membership of a state s in a state predi-
cate S by s |= S.

A transition is a pair of states of the form (s, s′) spec-
ified as a Boolean formula as follows. Let V ′ be the set

{v′ | v ∈ V } (called primed variables). Primed variables
are meant to show the new value of variables prescribed
by a transition. Thus, we define a transition (s, s′) by
the conjunction s ∧ s′ where s′ =

∧n
j=0 l(v′j) such that

v′j ∈ V ′ for all j.

Definition 2.2 (transition predicate) A tran-
sition predicate P is a finite set of transitions
{(s0, s

′
0), (s1, s

′
1) · · · (sm, s′m)} formally defined by

P =
∨m

i=0(si ∧ s′i). We denote the membership
of a transition (s, s′) in a transition predicate P by
(s, s′) |= P .
Notation. Let X be a state predicate. We use 〈X〉′ to
denote the state predicate obtained by replacing all vari-
ables that participate in X by their corresponding primed
variables. Also, let P be a transition predicate. We use
Guard(P ) to denote the source state predicate of P (i.e.,
s |= Guard(P ) iff ∃s′ :: (s, s′) |= P ).

Definition 2.3 (closure) Let P be a transition predicate
and S be a state predicate. We say that a state predicate
S is closed in P iff

∧
(s,s′)|=P ((s |= S) ⇒ (s′ |= 〈S〉′))

holds.

Definition 2.4 (process) A process j is specified by the
tuple 〈Vj , Pj , Rj , Wj〉 where Vj is a set of variables, Pj

is a transition predicate in the set of all possible states
obtained from Vj (called state space), Rj is a set of vari-
ables that j can read, and Wj is a set of variables that j

can write such that Wj ⊆ Rj ⊆ Vj (i.e., we assume that
j cannot blindly write a variable).
Write restrictions. Let 〈Vj , Pj , Rj , Wj〉 be a pro-
cess and v(s) denote the value of a variable v in state s.
Clearly, Pj must be disjoint from the following transition
predicate: NW j =

∨
(s,s′)

∨
v/∈Wj

(v(s) 6= v(s′)).
Read restrictions. Let 〈Vj , Pj , Rj , Wj〉 be a process,
v be a variable in Vj , and (s0, s

′
0) |= Pj where s0 6= s′0.

If v is not in Rj , then j must include a corresponding
transition from all states s1 where s1 and s0 differ only in
the value of v. Let (s1, s

′
1) be one such transition. Now,

it must be the case that s′0 and s′1 are identical except for
the value of v. And, value of v must be the same in s1 and
s′1. For instance, let Vj = {a, b} and Rj = {a}. Thus,
since j cannot read b, the transition ¬a ∧ ¬b ∧ a′ ∧ ¬b′

and the transition ¬a∧ b∧ a′ ∧ b′ have the same effect as
far as j is concerned. Thus, each transition (s0, s

′
0) in Pj

is associated with the following group predicate:

Groupj(s0, s
′
0) =

∨
(s1,s′

1
)

(
∧

v 6∈Rj
(v(s0) = v(s′0) ∧ v(s1) = v(s′1)) ∧∧

v∈Rj
(v(s0) = v(s1) ∧ v(s′0) = v(s′1)))

Definition 2.5 (program) A program P is specified by
a set Pr of processes. We require that the state space of
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all processes must be identical (i.e., ∀i, j ∈ Pr :: Vi =
Vj). Thus, the state space of P is identical to the state
space of its processes as well. For simplicity, we refer to
a program P by the disjunction of its processes’ transi-
tion predicates, i.e., P =

∨
j∈Pr

(Pj).
To concisely write the transitions in a process, we

use guarded commands (also called actions). A guarded
command is of the form L :: g −→ st , where L is a label,
g is a state predicate (called guard), and st is a state-
ment that describes how the program state is updated.
Thus, an action g −→ st denotes the transition predi-
cate {(s, s′) | s ⇒ g and s′ is obtained by changing s as
prescribed by st}.

Example (Byzantine agreement). Following the de-
scription of the Byzantine agreement program (denoted
BA) in the introduction, BA consists of a general pro-
cess g and three non-general processes j, k, and l. The
state space of each process is obtained by variables in
V = {d.g, d.j, d.k, d.l} ∪ (decision variables)

{f.j, f.k, f.l} ∪ (finalized?)
{b.g, b.j, b.k, b.l}. (Byzantine?)

The transition predicate of a non-general process, say j,
is specified by the following two actions:
BA1j :: (d.j = ⊥) ∧ (f.j = false) −→ d.j := d.g
BA2j :: (d.j 6= ⊥) ∧ (f.j = false) −→ f.j := true

Since the general process only provides a decision, its
transition predicate is empty. The sets of variables that
a non-general processes, say j, is allowed to read and
write are Rj = {b.j, d.j, f.j, d.k, d.l, d.g} and Wj =
{d.j, f.j}, respectively.

Definition 2.6 (computation) A sequence of states,
c = 〈s0, s1 · · · 〉, is a computation of program P iff the
following two conditions are satisfied: (1) ∀i ≥ 0 :
(si, si+1) |=P , and (2) if c is finite and terminates in state
sl then there does not exist state s such that (sl, s) |=P .

We distinguish between a terminating computation
and a deadlocked computation. Precisely, when a com-
putation c terminates in state sl, we include the transition
(sl, s

′
l) in P , i.e., c can be extended to an infinite com-

putation by stuttering at sl. On the other hand, if there
exists a state sd such that there is no outgoing transition
(or a self-loop) from sd then sd is a deadlock state.

Definition 2.7 (deadlock state) We say that a state s in
program P is a deadlock state iff for all states s′ in the
state space of P , (s, s′) 6|= P .

2.1 Specification and Invariant
A specification SPEC is a set of infinite sequences of
states. We now define what it means for a program to
satisfy a specification. We note that throughout the paper,
we assume that state space of a program and its specifi-
cation are identical.

Definition 2.8 (satisfies) Let P be a program, S be a
state predicate, and SPEC be a specification. We say
that P satisfies SPEC from S iff (1) S is closed in P ,
and (2) for all computations c = 〈s0, s1 · · · 〉 of P , where
s0 |= S, c is in SPEC .

Definition 2.9 (invariant) Let P be a program, SPEC

be a specification, and S be a state predicate where S 6=
false. We say that S is an invariant predicate of P for
SPEC iff P satisfies SPEC from S.

Observe that the notion of satisfies characterizes the
property of infinite sequences with respect to a program.
In order to characterize finite sequences, we introduce the
notion of maintains.

Definition 2.10 (maintains) Let SPEC be a specifi-
cation, P be a program, and S be a state predicate. We
say that program P maintains SPEC from S iff (1) S is
closed in P , and (2) for all computation prefixes α of P

that starts from S, there exists a sequence of states β such
that αβ is in SPEC . Otherwise, we say that P violates
SPEC .

We let the specification consist of a safety specifica-
tion and a liveness specification. Following Alpern and
Schneider [5], safety specification can be characterized
by a set of bad prefixes that should not occur in any com-
putation. Throughout this paper, we let the length of such
bad prefixes be two, i.e., a set of bad transitions denoted
by transition predicate SPEC bt. Thus, the safety specifi-
cation can be formally defined by the set SPEC bt of in-
finite sequences, such that no infinite sequence contains
a transition in SPEC bt.

A liveness specification of SPEC is a set of infinite
sequences of states that meets the following condition:
for each finite sequence of states α there exists a suffix
β such that αβ ∈ SPEC . In our synthesis problem (cf.
Section 4), we begin with an initial program that satisfies
its specification (including the liveness specification). As
mentioned earlier, the focus of this paper is on develop-
ing a parallel algorithm that resolves reachable deadlock
states of a program in the presence of faults. Clearly,
such deadlock resolution is crucial in order to ensure that
any finite computation of the synthesized program can be
extended to an infinite computation that is in SPEC . In
other words, our synthesis method preserves the liveness
specification. Hence, the liveness specification need not
be specified explicitly.
Notation. Whenever the specification is clear from the
context, we will omit it; thus, “S is an invariant of P ” ab-
breviates “S is an invariant predicate of P for SPEC ”.

Example (cont’d). The safety specification of BA re-
quires validity and agreement. Validity requires that if
the general is non-Byzantine then the final decision of a
non-Byzantine process must be the same as that of the
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general. And, agreement requires that the final decision
of any two non-Byzantine processes must be equal. Fi-
nally, once a non-Byzantine process finalizes (outputs) its
decision, it cannot change it. Thus, the following transi-
tion predicate forms the safety specification, where p and
q range over non-general processes:

SPEC btBA
=

(∃p :: ¬b′.g ∧ ¬b′.p ∧ (d′.p 6= ⊥) ∧ f ′.p ∧ (d′.p 6= d′.g)) ∨
(∃p, q :: ¬b′.p ∧ ¬b′.q ∧ f ′.p ∧ f ′.q ∧ (d′.p 6= ⊥)∧

(d′.q 6= ⊥) ∧ (d′.p 6= d′.q)) ∨
(∃p :: ¬b.p ∧ ¬b′.p ∧ f.p ∧ ((d.p 6= d′.p) ∨ (f.p 6= f ′.p)))

The invariant predicate of the Byzantine agreement
program consists of the following states. First, we con-
sider the set of states where the general is non-Byzantine.
In this case, one of the non-general processes may be
Byzantine. However, if a non-general process, say j, is
non-Byzantine, it is necessary that d.j be initialized to
either ⊥ or d.g. Also, a non-Byzantine process cannot fi-
nalize its decision if its decision equals ⊥. Moreover, we
consider the set of states where the general is Byzantine.
In this case, g can change d.g value arbitrarily. It follows
that if other processes are non-Byzantine and d.j, d.k and
d.l are initialized to the same value that is different from
⊥, the program satisfies SPEC btBA

. Thus, the invariant
predicate is as follows:

SBA =
¬b.g ∧ (¬b.j ∨ ¬b.k) ∧ (¬b.k ∨ ¬b.l) ∧ (¬b.l ∨ ¬b.j) ∧
(∀p :: ¬b.p ⇒ (d.p = ⊥ ∨ d.p = d.g)) ∧
(∀p :: (¬b.p ∧ f.p) ⇒ (d.p 6= ⊥)) ∨
b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l ∧ (d.j = d.k = d.l ∧ d.j 6= ⊥)

An alert reader can easily verify that BA satisfies
SPEC btBA

from SBA.

3 Fault Model and Fault-Tolerance
Following Arora and Gouda [6], the faults that a program
P is subject to are systematically represented by a tran-
sition predicate F in the state space of P .

Example (cont’d). The fault transitions that affect a
process, say j, of BA are as follows: (We include similar
actions for k, l, and g)

F1 :: ¬b.g ∧ ¬b.j ∧ ¬b.k ∧ ¬b.l −→ b.j := true

F1 :: b.j −→ d.j, f.j := 0|1, false|true

where d.j := 0|1 means that d.j could be assigned either
0 or 1. In case of the general process, the second action
does not change the value of any f -variable.

Definition 3.1 (fault-span) Given a program P , faults
F , and invariant S, we say that a state predicate T is an
F -span (read as fault-span) of P from S iff the following
two conditions are satisfied: (1) S ⇒ T , and (2) T is
closed in P ∨ F .

Just as we defined the computation of P , we say that
a sequence of states, 〈s0, s1 · · · 〉, is a computation of P

in the presence of F iff the following three conditions
are satisfied: (1) ∀j > 0 :: (sj−1, sj) |= (P ∨ F ), (2) if
〈s0, s1 · · · 〉 is finite and terminates in state sl then there
does not exist state s such that (sl, s) |=P , and (3) ∃n ≥
0 :: (∀j > n :: (sj−1, sj) |=P ).

Definition 3.2 (fault-tolerance) Let P be a program
with invariant S, F be a set of faults, and SPEC be a
specification. We say that P is F -tolerant (read as fault-
tolerant) to SPEC from S iff the following two condi-
tions hold: (1) P satisfies SPEC from S, and (2) there
exists T such that (i) T is an F -span of P from S, (ii)
P ∨ F maintains SPEC from T , and (iii) every compu-
tation of P ∨ F that starts from a state in T has a state in
S.

4 The Synthesis Problem
Given are a program P with invariant S, a class of faults
F , and specification SPEC such that P satisfies SPEC

from S. Our goal is to find a program P ′ with invariant
S′ such that P ′ is F -tolerant to SPEC from S ′. In or-
der to capture the requirement that our synthesis method
only adds fault-tolerance and does not add new behav-
iors in the absence of faults, we introduce the notion of
projection.

Definition 4.1 (projection) The projection of program
P on state predicate S, denoted as P |S, is the program
(i.e., transition predicate)

∨
(s,s′)|=P ((s |= S) ∧ (s′ |=

〈S〉′)). I.e., P |S consists of transitions of P that start in
S and end in S.
Now, observe that:

1. If S′ contains states that are not in S then, in the
absence of faults, P ′ may include computations that
start outside S. Since we require that P ′ satisfies
SPEC from S′, it implies that P ′ is using a new
way to satisfy SPEC in the absence of faults. Thus,
we require that S ′ ⇒ S.

2. If P ′|S′ contains a transition that is not in P |S ′

then P ′ can use this transition in order to satisfy
SPEC in the absence of faults. Thus, we require
that (P ′|S′) ⇒ (P |S′).

Following the above observations, the synthesis problem
is as follows.
Problem statement. Given P , S, F , and SPEC such
that P satisfies SPEC from S. Identify P ′ and S′ such
that:
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(C1) S
′

⇒ S,
(C2) (P

′

|S
′

) ⇒ (P |S
′

), and
(C3) P ′ is F -tolerant to SPEC from S ′.

Notice that the third condition of the synthesis prob-
lem implies that every computation of P ′ that starts from
a state in the fault-span of P ′, say T ′, has to be infinite
(cf. Definition 3.2). Hence, T ′ cannot include any dead-
lock states. In the next section, we introduce our parallel
algorithm for resolving deadlock states reachable from S

using transitions in P ∨ F . This algorithm can be used
as a building block of algorithms for synthesizing P ′ and
S′.

5 Parallel Symbolic Resolution of
Deadlock States

In this section, we present our parallel BDD-based algo-
rithm for resolving deadlock states reachable in the pres-
ence of faults in a distributed program. A major barrier in
such parallelization is that BDD manipulation packages
are not reentrant due to data structures shared across sev-
eral BDDs (e.g., a hash table that stores all BDD nodes).
There are two approaches to deal with this obstacle. The
first approach is to modify a BDD package to make it
reentrant (cf. Section 7 for details). The second ap-
proach is to utilize multiple instances of the BDD pack-
age that do not share memory. With this approach, each
thread works on its own copy of related BDDs. How-
ever, changes made by one thread would not be imme-
diately available to other threads. Hence, threads may
change the BDDs (e.g., the program being synthesized)
inconsistently. Therefore, we need to merge the results
and remove/manage the inconsistencies. In this work,
we consider the second approach.
Algorithm sketch. Intuitively, our algorithm works
as follows. During deadlock resolution, a master thread
spawns several worker threads each running on a differ-
ent processor core in parallel with an instance of its own
BDD package. The instance of the BDD package as-
signed to each worker thread is initialized using BDDs
for program transitions, invariant predicate, fault-span,
and fault transitions. The master thread partitions the set
of deadlock states and provides each worker thread with
one such partition. Subsequently, worker threads start
resolving their assigned set of deadlock states in paral-
lel by either (1) adding safe recovery, or (2) eliminating
the ones (i.e., making them unreachable) from where safe
recovery is not possible. Upon completion, the master
thread merges the results returned by each worker thread
and resolves inconsistencies.

5.1 Parallel Addition of Safe Recovery
Given a program P , faults F , fault-span T , invariant
predicate S, safety specification SPEC bt, and partition

predicates prt1 . . . prtn, where n ≥ 1 is the number of
worker threads to be spawned, our goal is to synthesize
a transition predicate P ′ such that T contains no dead-
lock states, i.e., T ∧ ¬Guard(P ′) = false. Before we
describe our parallel algorithm for resolving deadlock
states through addition of recovery actions, notice that
such a recovery mechanism should not violate the safety
specification. Thus, we first identify the state predicate
ms (Line 2 in Algorithm ResolveDeadlockStates in
Figure 1.a) from where faults alone can reach a state
where Guard(F ∧SPEC bt) is true (i.e., faults alone can
violate the safety). Now, let mt include the transitions
in SPEC bt as well as transitions in P that end in ms .
Observe that in order to ensure safety, P ′ (including its
recovery actions) must be disjoint from mt .

After identifying the set ds of deadlock states in T

(Line 4), we partition ds using the partition predicates
such that

∨n
i=1(prt i ∧ ds) = ds . To efficiently parti-

tion deadlock states between threads, one needs to de-
sign a method such that (1) deadlock states are evenly
distributed among worker threads, and (2) states consid-
ered by different threads for eliminating have a small
overlap during backtracking. Regarding the first con-
straint, we can partition deadlock states based on values
of some variable and evaluate the size of corresponding
BDDs by the number of minterms that satisfy the cor-
responding formula. Regarding the second constraint,
we expect that the overhead for such a split is as high
as it requires dedicated analysis of program transitions.
Hence, instead of satisfying this constraint, we add syn-
chronization between threads. Thus, we design partition
predicates based value of variables. For example, in the
case of Byzantine agreement program with four worker
threads, we let prt1 = (d.j = 0) ∧ (d.k = 0), prt2 =
(d.j = 0) ∧ (d.k 6= 0), prt3 = (d.j 6= 0) ∧ (d.k = 0),
and prt4 = (d.j 6= 0) ∧ (d.k 6= 0). Next, we assign
each partition prt i ∧ ds of deadlock states to a worker
thread to identify safe recovery paths from prt i ∧ ds to
the invariant predicate in a layered fashion (Lines 5-8 in
Algorithm ResolveDeadlockStates).

Each worker thread for adding recovery works as fol-
lows (cf. Thread AddRecovery in Figure 1.b). Let the
first layer, lyr , be the invariant predicate S (Line 1). We
now construct the recovery transition predicate rt by (1)
including transitions that originate from the given set of
deadlock states ds and end in lyr (Line 3), and (2) ex-
cluding transitions that can lead the program to a state
where safety may be violated (Line 4). We add the result-
ing recovery transition predicate to rec (Line 5). Now, for
the next iteration, we let lyr be the state predicate from
where one-step safe recovery is possible (Line 6). We
continue adding recovery transition predicates until no
such transition predicate is added. Notice that our strat-
egy on adding recovery paths guarantees that no cycles
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Algorithm 1 ResolveDeadlockStates

Input: program P , faults F , invariant S, fault span T , safety speci-
fication SPEC bt, and partition predicates prt

1
..prtn, where n is

the number of worker threads.
Output: program P ′ and the predicate fte of states failed to elimi-

nate.

1: Let rfo be the state predicate reachable by faults only from the
invariant predicate;

2: Let ms be the state predicate from where faults alone can reach
a state where Guard(F ∧ SPEC bt) is true.

3: mt := SPEC bt ∨ 〈ms〉′;
4: ds := T ∧ ¬Guard(P );

// Resolving deadlock states by adding safe recovery
5: for i := 1 to n do

6: rti := SpawnThread  AddRecovery(ds ∧ prt i, S, mt);
7: end for

8: ThreadJoin(1..n);

9: P := P ∨
W

n

i=1
rti;

10: vds , fte := false;
11: ds := T ∧ ¬Guard (P );

// Eliminating deadlock states from where safe recovery is not
possible

12: for i := 1 to n do

13: rpi, vdsi, ftei := SpawnThread  Eliminate(ds ∧
prti, P, S, F, T, vds, rfo, fte);

14: end for

15: ThreadJoin(1..n);

// Merging results from worker threads
16: P ′ := Group(

V

n

i=1
rpi);

17: fte :=
W

n

i=1
ftei;

18: vds :=
W

n

i=1
vdsi;

19: nds := ((T ∧ ¬S) ∧ ¬Guard(P ′)) ∧ ¬((T ∧ ¬S) ∧ ¬Guard(P ));
20: P ′ := P ′ ∨ Group(P ∧ nds);
21: P ′ := P ′ ∨ Group(P ∧ 〈fte ∧ rfo〉′);
22: return P ′, fte;

(a) Master Thread

Thread 1 AddRecovery
Input: deadlock states ds , invariant S, and transition predicate mt .
Output: recovery transition predicate rec.

1: lyr , rec := S, false ;
2: repeat

3: rt := Group(ds ∧ 〈lyr〉′);
4: rt := rt ∧ ¬Group(rt ∧ mt);
5: rec := rec ∨ rt ;
6: lyr := Guard(ds ∧ rt)
7: until (lyr = false);
8: return rec;

Thread 2 Eliminate
Input: deadlock states ds , program P , invariant S, fault transitions

F , fault span T , visited deadlock states vds , states predicate
reachable by faults only rfo, predicate fte failed to eliminate.

Output: revised program transition predicate P , visited deadlock
states vds, predicate fte failed to eliminate.

1: wait(mutex);
2: ds := ds ∧ ¬vds ;
3: vds := vds ∨ ds ;
4: signal (mutex );
5: if (ds = false) then

6: return P ;
7: end if

8: old := P ;
9: tmp := (T ∧ ¬S) ∧ P ∧ 〈ds〉′;

10: P := P ∧ ¬Group(tmp);
11: fs := Guard (T ∧ ¬S ∧ F ∧ 〈ds〉′) ∧ ¬rfo;
12: P, vds, fte := Eliminate(fs, P, S, F, T, vds , rfo, fte);
13: nds := Guard(T ∧ ¬S ∧ Group(tmp) ∧ ¬Guard(P ));
14: P := P ∨ (Group(tmp) ∧ nds);
15: nds := nds ∧ Guard(tmp);
16: fte := fte ∨ ¬〈old ∧ ¬P ∧ T ∧ 〈ds〉′〉′′;
17: P, vds, fte := Eliminate(nds ∧ ¬S,P, S, F, T, vds , rfo, fte);
18: return P, vds, fte;

(b) Worker Threads

Figure 1: Parallel algorithm for resolving deadlock states.

are introduced to the fault-span. Hence, any computation
that takes a recovery path reaches the invariant predicate
in a finite number of steps.

Once all worker threads complete there job (Line 8
in Figure 1.a), the master thread adds all the recovery
transitions returned by worker threads to the program’s
transition predicate (Line 9 in Algorithm ResolveDead-
lockStates). At this point, the remaining deadlock states
(Line 11) have to be made unreachable, as it is not possi-
ble to add safe recovery from them to the invariant pred-
icate.

Example (cont’d). As mentioned in the introduc-
tion, one type of deadlock states in BA is of the form
〈0, 0, 0, 1〉, where the Byzantine general g and non-
general processes j and k agree on decision 0, but pro-
cess l has decided on 1. The algorithm ResolveDead-
lockStates resolves such deadlock states and their sym-
metrical states by adding the following recovery actions

to process l (and by symmetry to processes j and k) of
BA:

BA3l :: d.j = 0 ∧ d.k = 0 ∧ d.l = 1 ∧ f.l = 0
−→ d.l, f.l := 0, 0|1

BA4l :: d.j = 1 ∧ d.k = 1 ∧ d.l = 0 ∧ f.l = 0
−→ d.l, f.l := 1, 0|1

5.2 Parallel State Elimination
Let ds be a deadlock state predicate from where recov-
ery to the invariant predicate cannot be added. Hence,
in order for P ′ (the synthesized program) to satisfy the
third condition of the synthesis problem, we need to en-
sure that ds is eliminated from the set of states that P ′

can reach in the presence of faults. Similar to addition of
recovery paths, the Algorithm ResolveDeadlockStates
launches one worker thread per each partition of ds for
elimination (Lines 12-15).

The Thread Eliminate (cf. Figure 1.b) works as fol-
lows. We first keep track of visited deadlock states by all

7
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Figure 2: Inconsistencies raised by concurrency.

worker threads (Lines 1-4) so that no thread attempts to
eliminate deadlock states that have already been consid-
ered for elimination. In particular, all threads synchro-
nize on the predicate vds which contains visited dead-
lock states by all threads (Lines 1-4). Next, we remove
all incoming transitions to ds (Lines 8-10). Then, since
a program does not have control over the occurrence of
faults, we eliminate states that can reach ds via a fault
transition (Lines 11-12). Now, if removal of transitions
in Line 10 causes some state predicate nds to become a
deadlock state predicate (Line 13) then we add the transi-
tions (and the corresponding group) that begin from nds

(Lines 15-17) to P and instead, we eliminate nds1. We
keep repeating this procedure recursively until there does
not exist a state to eliminate.

Once all worker threads complete their job (Line 15
in Figure 1.a), the master thread merges all the results
by collecting transitions that all worker threads agree
on (Line 16). Although the above algorithm is a sound
building block for a sequential algorithm, it may create
inconsistencies when multiple instances of it run in par-
allel.

5.2.1 Handling Inconsistencies
Let s1 and s2 be two states that are considered for elim-
ination and (s0, s1) and (s0, s2) be two transitions for
some s0. A sequential algorithm that applies Eliminate,
removes transitions (s0, s1) and (s0, s2) which causes s0

to be a new deadlock state (cf. Figure 2.a). Hence, it
puts (s0, s1) and (s0, s2) (and corresponding group pred-
icates) back into the program being synthesized and in-
vokes Eliminate on state s0. However, when multiple
worker threads, say th1 and th2, run concurrently, there
are three possible scenarios that cause inconsistencies,
described next.

1Let P be a transition predicate. 〈P 〉′′ denotes the state predi-
cate obtained by first abstracting unprimed variables in P and then
replacing all primed variables of P by their corresponding unprimed
variables.

Case 1. Consider the case where deadlock states s1 and
s2 are in different partitions. Hence, th1 invokes Elimi-
nate on s1 which in turn removes (s0, s1), and, th2 in-
vokes Eliminate on s2 which removes (s0, s2) (cf. Fig-
ure 2.b). Thus, neither thread invokes Eliminate on s0,
since they do not identify s0 as a deadlock state. Sub-
sequently, when the master thread merges the results re-
turned by th1 and th2 (i.e., Line 16 in Figure 1.a), s0

becomes a new deadlock state which has to be elimi-
nated while the group predicates of transitions (s0, s1)
and (s0, s2) have been removed unnecessarily. In order
to resolve this case, we replace all outgoing transitions
that start from s0 and mark s0 as a state that has to be
eliminated in subsequent iterations (Lines 19-20).
Case 2. Due to backtracking behavior of Eliminate,
it is possible that th1 and th2 consider common states
for elimination. In particular, if th1 considers s1 and th2

considers both s1 and s2 for elimination (cf. Figure 2.b),
after merging the results, no new deadlock states are in-
troduced. However, (s0, s1) would be removed unnec-
essarily. In order to resolve this case, we collect all the
states that worker threads failed to eliminate (i.e., state
predicate fte in Line 17 in Figure 1.a) and replace all in-
coming transitions into those states (Line 21).
Case 3. It is also possible that th1 considers s1 and th2

considers neither s1 nor s2 (cf. Figure 2.c). This case oc-
curs when th2 stops backtracking at a level higher than s1

and s2 in the reachability graph due to facing either Case
1 or Case 2. Thus, when the master thread merges the
results returned by the worker threads, no new deadlock
state is introduced, but (s0, s1) is removed unnecessarily.
While identifying this case given the structures in Fig-
ure 2.c is not straightforward, one approach to resolve
this inconsistency is to force all worker threads to syn-
chronize at each backtracking step. Since such synchro-
nization seems to decline the performance of the parallel
algorithm, we choose not to handle this case. Notice that
removal of (s0, s1) does not result in synthesizing an in-
correct program. However, the program synthesized us-
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ing the parallel algorithm may have less transitions than
the program synthesized by the sequential algorithm. We
note that this case is not due to our algorithm strategy, but
an artifact of breadth-first-search nature of BDD-based
reachability analysis. In fact, any random state space
search strategy may as well exhibit this case.

Example (cont’d). As mentioned in the introduc-
tion, another type of deadlock states in BA is of the
form 〈0, 0, 0, 1〉, where non-general processes j and k

agree with the Byzantine general on decision 0, but pro-
cess l has finalized its decision on 1. Since process l

has finalized its decision, we cannot resolve such dead-
lock states by adding safe recovery. Thus, the algo-
rithm ResolveDeadlockStates has to eliminate states
in 〈0, 0, 0, 1〉. More specifically, the Thread Eliminate
backtracks through the reachability graph until it re-
moves the transition 〈1,⊥,⊥, 1〉 → 〈1,⊥,⊥, 1〉. This
removal creates no new deadlock state and, hence, Elim-
inate terminates successfully. Precisely, our algorithm
revises action BA2l, so that no computation of BA in the
presence of faults reaches a deadlock state as follows:

BA2l :: (d.l 6= ⊥) ∧ (f.l = false) ∧ (d.j 6= ⊥ ∨ d.k 6= ⊥)
−→ f.l := true

We note that in the context of of BA, inconsistency of type
Case 3 does not occur. However, Cases 1 and 2 do occur, but
our algorithm fixes them. In fact, the output of our synthe-
sis algorithm is identical to the solution proposed by Lamport,
Shostak, and Pease [3].

6 Experimental Results and Analysis
In this section, we present experimental results of the
implementation of the Algorithm ResolveDeadlock-
States. Throughout this section, all parallel experiments
are run on a Sun Fire V40z with 2 dual-core Opteron
processors and 16GB RAM. The BDD representation of
the Boolean formulae has been done using the C++ in-
terface to the CUDD package developed at University of
Colorado [7]2. We note that our algorithm is determin-
istic and the testbed is dedicated. Hence, the only non-
deterministic factor in time for synthesis is synchroniza-
tion among threads. Based on our experience with the
synthesis, this factor has a negligible impact and, hence,
multiple runs on the same data essentially reproduce the
same results.

Table 1 illustrates the detailed outcome of our experi-
ments with respect to two programs, namely, Byzantine
agreement (denoted BAi) and Byzantine agreement with
fail-stop faults (denoted BAFS i), where i is the num-
ber of non-general processes. In BAFS , in addition to

2Note that the results for the sequential algorithm in this paper are
different from the ones appeared in [2] due to unrelated optimizations
that are present in both the sequential in parallel algorithms.

Byzantine faults introduced in Section 3, the program
is subject to fail-stop faults which stop normal opera-
tion of a process. Clearly, as compared to BA, BAFS

has a larger size of reachable states and a more com-
plex structure. The table shows total synthesis time,
state elimination time including the time spent in worker
threads Eliminate and handling inconsistencies, addition
of recovery time, and memory usage for synthesizing
the fault-tolerant version of the given program. Recall
that in addition to deadlock resolution, the total synthe-
sis time includes other tasks such as generation of fault-
span, removing unsafe actions, and reconstructing invari-
ant which are not in the scope of this paper and, therefore,
are omitted in Table 1.

6.1 Parallelism Timing Analysis
Before we analyze the results, we note that for less than
10 non-general processes, our parallel algorithm does not
outperform the sequential (not threaded) algorithm due to
negligible state elimination time and high level of context
switching. However, for 10 or more non-general pro-
cesses, as can be seen in Table 1, all results show sig-
nificant speedups when our parallel algorithm runs on
two or four cores as compared to the sequential algo-
rithm. In fact, as the size of reachable states (i.e., the
fault-span) grows, the parallel algorithm exhibits a bet-
ter performance in both state elimination and addition of
recovery. For instance, in case of BAFS 25, deadlock res-
olution takes more than one day using the sequential al-
gorithm, whereas the same task can be accomplished in
slightly more than 1.5 hours using the parallel algorithm
running on four cores. This speedup is observed in vir-
tually all the experiments. However, the table shows that
4-core runs do not show significant improvement over 2-
core runs. We explain the reason later in this section.

One can observe that the performance improvement of
our parallel algorithm is superlinear. Obviously, such
a dramatic improvement cannot be solely attributed to
parallelization. Our experiments show that this speedup
is due to both parallelization and partitioning deadlock
states which significantly reduces the size of BDDs in-
volved during deadlock resolution. To understand the
reason for the superlinear speedup from Table 1, we
conduct three sets of experiments. First, after creating
the threads, we force the threads to run sequentially by
adding synchronization between them (cf. Table 2 for
results). While this setup explains a part of the super-
linear speedup, we find that the completion time for the
case where threads run on two cores is less than half of
that for the case where threads run sequentially. To un-
derstand this, we identify the size of the BDDs explored
in the partitioned sequential run and in the parallel run
(cf. Table 3). Furthermore, we perform a subset of ex-
periments from Table 1 on a single processor machine
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Sequential Parallel 2-core Parallel 4-core

RS Tt El Rc Mm Tt El Rc Mm Tt El Rc Mm
Ex Ic Ex Ic

BA
10 108 0.5 0.4 0.01 18 0.2 0.1 0.02 0.02 23 0.2 0.07 0.03 0.02 36

BA
15 1012 6.9 6.6 0.2 26 1.1 0.6 0.1 0.2 41 0.9 0.5 0.2 0.1 69

BA
20 1016 57 55 1.2 29 5.1 3 0.4 1.4 46 4.4 2.4 0.7 0.9 75

BA
25 1020 317 312 4 29 14.5 9.1 0.9 3.6 46 13.4 8 1.5 3 75

BA
27 1022 538 530 5.5 32 21.4 13.5 1 5.7 46 20.4 12.3 2.1 4.5 73

BA
28 1023 700 687 10 33 26.8 17.9 1.2 6.3 46 30.9 16 3.2 7.3 80

BAFS
10 109 2.9 2.7 0.1 28 0.8 0.4 0.1 0.1 25 0.8 0.3 0.1 0.1 82

BAFS
15 1014 82.8 80.9 1.4 31 5.8 3 0.6 1.5 47 5.6 2.6 0.7 1.3 73

BAFS
20 1019 1067 1055 9.3 34 30 18.3 2.1 7.1 54 24.9 13.9 2.3 5.2 85

BAFS
25 1022 > 24h * * * 108.9 69.5 5.5 26.2 58 96 55 5.4 24 97

BAFS
27 1024 > 24h * * * 147.2 94.8 6.3 35.3 58 146.7 84.1 8.03 36.2 99

BAFS
28 1025 > 24h * * * 170.63 113.05 7.48 36.98 60 170 102 8 40.7 100

Table 1: Experimental results for algorithm ResolveDeadlockStates. RS: Size of reachable states. Tt: Total synthesis time
in minutes. El: Total time spent in state elimination in minutes. Ex: Total time (m) spent by Eliminate worker threads. Ic:
Time spent (m) for resolving inconsistencies. Rc: Time spent (m) for addition of recovery paths. Mm: Memory usage in KB.

Sequential Sequential 2-partition Sequential 4-partition

Tt El Rc Tt El Rc Tt El Rc
Ex Ic Ex Ic

BA
15 6.9 6.6 0.2 3.22 2.57 0.17 0.33 5 4.33 0.2 0.35

BA
20 57 55 1.2 12.58 10.22 0.38 1.62 22.87 20.62 0.48 1.55

BAFS
10 2.9 2.7 0.1 1.3 0.9 0.1 0.1 2.2 1.7 0.1 0.1

BAFS
15 82.8 80.9 1.4 16.6 13 0.8 2.1 26.4 22.6 0.8 1.9

Table 2: Effect of partitioning without parallelizing.

where no (additional) synchronization is added between
the threads but they are prevented from running simul-
taneously because the underlying machine has only one
core (cf. Table 4). These results conclusively demon-
strate that the reduction in the size of BDDs caused by
partitioning the deadlock states is responsible for the su-
perlinear speedup.

In order to study the experimental results in detail
consider Table 2, where we partition the set of dead-
lock states and then run Eliminate for each partition in
a sequential manner so that the output (transition pred-
icate) of state elimination for the first partition is in-
put to the second invocation of Eliminate for the sec-
ond partition. For instance, in case of BAFS 15, we gain
82.8
16.6 ' 5 times speedup by only splitting deadlock states
in two partitions. However, Table 1 shows that the over-
all speedup for BAFS 15 is 82.8

5.8 ' 14.3 which means
we gain 14.3

5 ' 2.9 by parallelizing on two cores. No-
tice that other experiments have the same pattern. There

are two reasons for this extra speedup: (1) smaller size
of BDDs in the parallel algorithm as compared to par-
titioned sequential algorithm, (2) distribution of BDDs
across multiple threads. These issues are discussed next.

The effect parallelization on the size of BDDs. Ta-
ble 3 shows the number of nodes in the BDD that rep-
resents visited deadlock states (i.e., the variable vds in
Thread Eliminate in Figure 1.b) for parallel and sequen-
tial invocations of Eliminate. As can be seen, the size
of nodes in the parallel runs are smaller and, hence, their
manipulation is faster. This is due to the fact that when
two threads are running in parallel and synchronize on
vds , they do not explore the reachability graph as deep
as when they are running one after another. In other
words, when two Eliminates run concurrently they do
not invade each other’s territory. Moreover, one can ob-
serve that this behavior is more dramatic as programs get
larger. As a direct result, our algorithm benefits from the
synchronization on vds . We have observed this pattern
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Sequential 2-partition Parallel 2-core
Eliminate1 Eliminate2 Eliminate1 Eliminate2

BA
15 4938 4943 4603 4774

BA
20 8943 8379 6578 6464

Table 3: Number of nodes in BDDs that represent visited
deadlock states.

Seq. Par. 2-partition 1-core Par. 4-partition 1-core

BA
15 6.2 1.4 2.1

BA
20 51.8 6 9.4

Table 4: Total synthesis time when parallel algorithm runs on
a single-core machine. (Note that since this set of experiments
required a single core machine, they are performed in a differ-
ent setup than previous experiments. Hence, the time cannot
be directly compared with time from other tables.)

in other experiments as well.
The effect of distribution of BDDs across multiple
threads. As another approach to analyze the super-
linear speedup, we repeated a subset of experiments pre-
sented in Table 1 on a single processor/core machine
with 2.2GHz processor and 1G memory. Thus, in this
setup, similar to the experiments from Table 1, deadlock
states are partitioned into multiple threads. Although no
explicit (additional) synchronization is added between
these threads (as done in experiments in Table 2), they
cannot execute simultaneously since there is only one
processor/core. The results from these experiments are
available in Table 4. As we can see from this table,
for BA15 (respectively, BA20), a speedup of 4.3 (respec-
tively, 8.6) is obtained with two threads running on a sin-
gle core. By comparison, in this example, the speedup
was 6.3 (respectively, 11.2) when these threads were per-
mitted to execute on a multicore machine. Thus, results
from Tables 2-4 conclusively demonstrate that the super-
linear speedup in Table 1 is caused by the fact that the
size of the BDDs is reduced due to partitioning of dead-
lock states across different threads.

Table 2 also reveals why 4-core runs do not outperform
2-core runs significantly. This is due to creation of sig-
nificantly more inconsistencies in a 4-partition structure
than a 2-partition structure. In fact, parallelization using
4-core shows a better improvement than 2-core. Thus,
our parallel algorithm is considerably efficient. Table 1
also shows that we benefited from parallelism since the
time spent to resolve inconsistencies was significantly
less than the time spent for running worker Eliminate
threads. However, more research needs to be done on ef-
fective partitioning which is an issue in distributed model

checking as well. As an example of unbalanced parti-
tioning, we note that if one partitions deadlock states of
Byzantine agreement based on b.g and d.j, no speedup
is gained, since the value of b.g in all deadlock states in
fault-span is 1.

We have also observed that in cases where there exist a
large number of processes in a distributed program, com-
puting group predicates becomes a bottleneck, which in
turn may make the execution of worker threads into the
corresponding sequential algorithm. In fact, this is the
very reason that parallel addition of recovery does not
show a significant performance improvement.

6.2 Memory Usage
Although incorporating multiple instances of a BDD
package increases the memory usage, we argue that since
the required amount of memory is not a bottleneck, the
trade off between speedup and memory usage is remark-
ably beneficial. In fact, the crucial factor in our exper-
iments (and perhaps in general in program synthesis) is
time and not space. Moreover, Table 1 shows that instan-
tiating two BDD packages does not double the amount of
required memory.

7 Related Work
Automated program synthesis and revision has been
studied from various perspectives. Inspired by the sem-
inal work by Emerson and Clarke [8], Arora, Attie,
and Emerson [9] propose an algorithm for synthesizing
fault-tolerant programs from CTL specifications. Their
method, however, does not address the issue of addi-
tion of fault-tolerance to existing programs. Kulkarni
and Arora [10] introduce enumerative synthesis algo-
rithms for automated addition of fault-tolerance to cen-
tralized and distributed programs. In particular, they
show that the problem of adding fault-tolerance to dis-
tributed programs is NP-complete. In order to remedy
the NP-hardness of synthesis of fault-tolerant distributed
programs and overcome the state explosion problem, we
proposed a set of symbolic heuristics [2] which allowed
us to synthesize programs with state space of size 1030

and beyond.
Ebnenasir [11] presents a divide-and-conquer method

for synthesizing failsafe fault-tolerant distributed pro-
grams. A failsafe program is one that does not need to
satisfy its liveness specification in the presence of faults.
Thus, a respective synthesis algorithm does not need to
resolve deadlock states outside the invariant predicate.
Moreover, Ebnenasir’s synthesis method resolves dead-
lock states inside the invariant predicate in a sequential
manner.

Parallelization of symbolic reachability analysis has
been studied in the model checking community from
different perspectives. In [4, 12, 13], the authors pro-
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pose solutions and analyze different approaches of paral-
lelization of saturation-based generation of state space in
model checking. In particular, in [13], the authors show
that in order to gain speedups in saturation-based par-
allel symbolic verification, one has to pay a penalty for
memory usage up to 10 times, as compared to the se-
quential algorithm. Other efforts range from simple ap-
proaches that essentially implement BDDs as two-tiered
hash tables [14, 15], to sophisticated approaches rely-
ing on slicing BDDs [16] and techniques for worksteal-
ing [17]. However, the resulting implementations show
only limited speedups.

8 Conclusion and Future Work

In this paper, we focused on one of the main com-
plexity barriers, resolution of deadlock states, in auto-
mated addition of fault-tolerance to distributed programs.
Our approach was based on parallelization with multiple
threads. We considered parallelization in two scenarios:
(1) adding recovery transitions, and (2) eliminating dead-
lock states. With the parallelization of these scenarios,
we gain a significant speedup. As expected, most of the
speedup was due to reduction in time to eliminate dead-
lock states. We also demonstrated that we gained super-
linear speedup due to partitioning deadlock states that
reduces the size of corresponding BDDs.

While parallelization reduces the time spent in elimi-
nating deadlock states, it may also lead to some incon-
sistencies that have to be resolved. The time for re-
solving such inconsistencies is one of the bottlenecks in
parallelization, as this inconsistency is resolved sequen-
tially. We note that the synchronization on visited states
was also added, in part, to reduce inconsistencies among
threads by requiring them to coordinate with each other.

Our approach provides each thread with its own copy
of shared variables. Although this has a potential to in-
crease the memory usage, our experiments show that the
actual memory usage is low. In general, synthesis prob-
lems tend to have a higher time complexity than the cor-
responding verification problems. Hence, we expect that
a symbolic synthesis algorithm will run out of time be-
fore it runs out of memory. Hence, the increased space
complexity is unlikely to be the bottleneck during syn-
thesis.

One future work in this context is to identify tradeoff
in additional synchronization among threads. While this
may reduce concurrency among threads, it may also re-
duce the time for resolving inconsistencies. Another fu-
ture work is parallelization of the other complexity bar-
rier, fault-span generation.
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